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1. INTRODUCTION

In [7] D. G. Moursund examined the problem of approximating X l/2 over
an interval [a, b] (a > 0) by applying the Newton-Raphson iteration scheme
to classes of polynomial and rational approximants. G. Meinardus and
G. D. Taylor [6] have observed that the above problem may be posed in a
more general setting and the results obtained by Moursund extended to the
approximation of additional functions. Specifically, given a compact subset
X of [a, b], let C(X) denote the space of all continuous real-valued functions
defined on X normed by IIfll = max{1 w(x)f(x)l: x E X}, where wE C(X)
and w > 0 on X. Let K be a convex subset of C(X) and <P a continuous
mapping of K into C(X). The problem of interest was then to approximate
g E <P(K) by elements of <P(M) where M is a subset ofK consisting ofmembers
of a Haar subspace of C[a, b]. By imposing certain restrictions on <P, K
and .M, Meinardus and Taylor were able to develop a theory for the above
nonlinear approximation problem which is analogous to the classical
Chebyshev theory. Moreover they were able to obtain results similar to
those of P. H. Sterbenz and C. T. Fike [13] and R. F. King and D. L.
Phillips [2] in the more general setting. Since the theory obtained has appli­
cation to many iterative processes that can be used to approximate functions
such as eX, In x and X l/n , n = 2, 3,... the following definition is made:

DEFINITION. P EM is an optimal (or best) starting approximation for g,
with respect to <P and M, if II g - <P(p)11 ::::;; II g - <P(q) II for all q E M.

In this paper we shall investigate the above problem for M a subset of K
consisting of certain classes of rational functions. We shall be particularly
concerned with the characterization of optimal starting approximations for
certain choices of K. Uniqueness of best approximation follows from the
characterization theorems as in the classical rational Chebyshev approxi­
mation. Existence in the general setting is difficult to establish. The theory
obtained will be applied to the Newton operator and optimal starting approxi-
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mations calculated for x~, ex E (0, 1), ex, and In x. Finally we shaH indicate
a number of additional iteration schemes for which the theory is also
applicable.

2. DEFINITIONS AND BASIC RESULTS

In what follows X will denote a compact subset of [a, b] containing at
least m + n + 2 points where m and n are fixed for the discussion at hand.
Let P" denote the set of all polynomials p with cp :C n (cp denotes the degree
of p) and set

R"",,[a,b] ={plq:pEP",qEP",,(p.q) = l,q >Oon[a,b]},

where (p, q) = 1 denotes the fact that the polynomials p and q are relatively
prime.

In our development we wish to make use of the results and techniques
of the classical Chebyshev rational approximation. Consequently we intro­
duce the following definitions and results from the work of Meinardus and
Taylor [6]. We assume that K, M and fP are as described in Introduction.

DEFINITION 2.1. The operator fP is called pointwise strictly monotone
atfE K iffor each h, k E K we have

for each X oc X

LEMMA 2.2. Let fP: K ---?- C(X) be pointwise strictly monotone at f E K.
If k E K and at X o E X, k(xo) =1= f(xo), then tJ>(k)(xo) =1= <P(f)(xoJ.

DEFINITION 2.3. The operator fP is said to be pointwise fixed at fE K
if h E K with h(xo) = f(xo) for X o E X implies W(h)(xo) = 'P(f)(xc)'

Next we shall note that the composition of two continuous operators
possessing the above properties is again such an operator provided that
domains and ranges mesh correctly.

LEMMA 2.4. Let f/J: K ---?- C(X) and ifJ: L --+ C(X) be continuous operarors
with W(K) C L, fP pointwise strictly monotone and pointwise fixed at f c K
and if; pointwise strictly monotone and pointwise fixed at tJ>(f) E L. Then
if;f/J: K --+ C(X) is a continuous pointwise stricti)' monotone operator at f
which is also pointwise fixed at f
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In general the notions of pointwise strictly monotone and pointwise
fixed are independent. However if flJ: K ---+ K, as is necessary if we wish to
iterate with flJ, then the notions of pointwise strictly monotone and pointwise
fixed are related according to the following lemma:

LEMMA 2.5. If flJ: K ---+ K is a continuous operator on the convex set K
which is pointwise strictly monotone at f E K then flJ is pointwise fixed at f

For the sake of any iteration processes we may be interested in, we state
the following corollary to the above lemma:

COROLLARY 2.6. If flJ: K ---+ K is continuous, flJ(f) = f for some fE K
and flJ is pointwise strictly monotone at fE K then flJ"': K ---+ K defined induc­
tively by flJ"'(h) = flJ(flJm-l(h)), m = 2,3, ... , satisfies flJm(j) = f and flJrrL is
pointwise strictly monotone at f

3. CHARACTERIZATION OF OPTIMAL STARTING ApPROXIMATIONS

We shall now specialize M and K and develop an alternation theory for
characterizing optimal starting approximations which is similar to the classical
Chebyshev theory. The following version of a well-known lemma from Rice
[11, p. 79] will be used extensively.

LEMMA 3.1. Given r = pjq E R",,.,,[a, b], T > ° and any ordered set
{Xi} of s points in X, s < 1 + max{m + cp, n + cq}, there is a rational
function r. E Rm.n[a, b] such that (i) II r. - r II"" < T and (ii) sgn(r(x) - r.(x)) =
(_I)i+1, X E (Xi' Xi+1), i = 0, 1, ... , s, where Xo = a if Xl =I=- a and XS+1 = b
if X s -:- b.

THEOREM 3.2. Let flJ: K -+ C(X) be a continuous operator, where K is
a convex subset of C(X). Let M = K n R",.n[a, b] be a nonempty, relatively
open subset of R",.,,[a, b]. Finally, assume that flJ is pointwise strictly monotone
andpointwisefixed at f E K ,...., M. Then rEM is the best starting approximation
for flJ(j) if and only if there exist points

N = 2 + max{m + cp, n + 8q},

for which

(i) Xl < X2 < .. , < XN,

(ii) j W(Xi)(flJ(j)(Xi) - <P(r)(x;))j = II flJ(j) - <P(r)jj, i = 1, , N, and

(iii) sgn(j(xi) - r(xi)) = (-1)i+1 sgn(f(xl ) - r(xl)), i = 1, , N.
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Proof (Sufficiency). Since f ¢C 1vI we know that there exists a point
X oE X for which f(xo) 01= r(xo). Thus II (JJ(j) - W(r):i ~ O. Suppose thr.t
Iw(x;)(eJ>(j)(X,.) - (JJ(r)(xi»] = II eJ>(f) - <P(r)!: and

sgn(f(xi) - r(xi» = (_1)i+l sgn(f(xJ - r(x l »), i = 1,... , 1\l.

Then tP(f)(Xi) ~ !P(r)(x,.). Let 1'1 E 1vI be such that ,I <JJ(f) - <P(rlW ~

II tPU) - <P(r)I]. At Xi, i = 1,..., N, i w(X,.)(<P(f)(x;.) - <P(rl)(Xi» I <:
I W(Xi)(([)(f)(xi) - !P(r)(x,.»:. Now at each x,. either rex;) > f(x,.) or
r(x,.) < f(x,.) since ([) is pointwise fixed at .f In the first case we h2.ve
r(xi) ::?: fl(X,.) and in the second case that r(xi) ~ fl(X,.) by the pointwise
strict monotonicity of !P at.f But this implies r ~ 1'1 as in the standard
rational theory.

(Necessity). Suppose that there exists {X,.}j\"l C X. N' < iV, N' maxiE:al
on which IW(Xi)(<P(f)(X,.) - !P(r)(x,.»i = I: !P(f) - <P(r)11 and

Let II , 12 , ... , IN', be a collection of relatively open intervals in [a, b] such
that x,. E Ii, I,. n I j = fP for i cI= j (1i denotes the closure of Ii relative to
[a, b]), all extreme points = {x E X: I w(x)(<P(f)(x) - ([)(r) (x» [ =

II <P(j) - !P(r)ll} C U~lli and for each extreme point in Ii the fnnctioE
f - I' has constant sign. Let

where 1/ denotes the complement of Ii with respect to [a, b]. Y is a comp;;,.ct
subset of X and Iw(x)(!P(f)(x) - ([)(r)(x» I < 11 <P(f) - <PCr)11 for all x E Y.
By continuity there exists p > 0 for which

mayx [ w(x)(!P(f)(x) - <P(r)(x»i ~ I~ CP(j) - <P(r)!' - p.
xE

Next, let

H'i = {x E X n Ii: [ w(x)(!P(f)(x) - !P(r)(x»] ;;;: lil (j)(f) - <P(r)ii

and

sgn(j(x) - rex)) = sgn(j(xi) - r(xi))}'

W = U:l Wi is a compact subset of X and so by continuity there exists
?] > 0 such that [f(x) - r(x) [ ;;;: 'YJ on W. Set

Zi = {x E X n Ii : I w(x)(!P(f)(x) - <P(r)(x»] ;;;: iii r:[J(j) - <P(r)[I
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sgn(f(x) - rex»~ =F Sgn(f(Xi) - r(Xi»}

N'
and let Z = Ui~l Zi . Observe that

Iw(x)(<P(f)(x) - <P(r)(x» I < II <P(f) - <P(r)11

by the construction of the intervals {1;}. Finally, set

for all x E Z

Ui = {x E X n Ii : 1w(x)(<P(f)(x) - <P(r)(x» 1~ ill <P(f) - <P(r)ll}

and let U = U~l Ui • Then by continuity there exists 0 > 0, 0 ~ p, such
that

max I w(x)(<P(f)(x) - <P(r)(x» 1~ [I <P(f) - <P(r)11 - o.
XEZUU

Using Lemma 3.1, the continuity of <P and the fact that M is relatively open
in R",.n[a, b] we can select €1 > 0 such that for 0 < € ~ €1' 1'0 E]VI and

max I w(x)(<P(f)(x) - <P(r.)(x» 1~ II fJ>(f) - W(r)11 - to.
XEYUZUU

Next, by continuity off and 1', we can select €2 , 0 < €2 ~ €1 , such that for
o < € ~ E2' 1'. lies strictly between/ex) and rex) on W. By the strict mono­
tonicity of Watfwe then have that

max [ w(x)(W(f)(x) - W(r.)(x»! < II W(n - W(r)ll.
XEW

Thus for E with 0 < E ~ €2 ,1'. is such that II <P(f) - <P(r.)11 < II W(n - W(r)ll.
Finally, since M is relatively open in R""n[a, b], we can select E3 with
o < E3 ~ E2 so that 1'. EM and [I W(n - W(r. )11 < II <P(f) - <P(r)I[. Thus

3 3

r. is a better starting approximation than l' which is a contradiction and this
3

concludes the proof of the theorem.

COROLLARY 3.3. If WU) has a best starting approximation under the
setting of the above theorem then it is unique.

In the next theorem we wish to consider a characterization of the best
starting approximation for W(n from a family of functions having restricted
ranges. Much of the general theory for restricted range approximation by
both polynomial and rational functions can be found in Taylor [14] and
[15], Schumaker and Taylor [12], and Loeb, Moursund, and Taylor [5].

For our consideration let lex), u(x) E C(X) with lex) < u(x) for all x E X.
Define K = {IE C(X): lex) ~/(x) ~ u(x)} and set M = K n Rm.n[a, b]
which we assume is nonempty.
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THEOREM 3.4. Let eJ): K ---?- C(X) be a continuous operator which is point­
wise strictly monotone and pointwise fixed at f E K ,...., AI, where K and ~~1 are
as defined above. Then r = pjq E M is a best starting approximation for <PC!)
if and oniy if there exists {Xi};;:l.c X, N = 2 + max{n + [Iq, m + cp}, fo?
which

(i) Xl < X 2 < ... < XN,

(ii) ! W(Xi) (eJ)(f)(Xi) - eJ)(r)(Xi» I = II $(f) - $(r)ll, rex;) = u(x;}, or

rex,) = l(xi)'

(iii) sgn*(f(xi) -r(xi» = (-I)i+lsgn*(f(x1) -r(x1»,
where

j
sgn (j(x) - rex»~

sgn* (f(x) - rex»~ = +1

\ -1

if rex) ~ lex) and
rex) cF u(x)

if rex) = l(x) ,
if rex) = u(x).

COROLLARY 3.5. Under the conditions of the above theorem the optimal
starting approximation for eJ)(f) is unique.

In [9] A. Perrie examined the problem of rational approximation with
osculatory interpolation. We shall now examine a problem analogous to
that considered by Perrie for our operator setting. Let X.c [a, b] be compact,
{Yi}f~l a fixed set of p points in X with }'1 < Y2 < ... < y,~ and {mi}f~l a
fixed set of positive integers with m* = L~4 111; < n + 1. We shall assume
that X contains at least n + m - m* +p -:-- 2 points. Furthermore, let
{a;} r~l be a fixed set of p real numbers and define

K = {fE C(X):f(Yi) = ai, i = 1, 2, ... ,p}.

Let au, i = 1,... , p, j = 0, 1,..., Tni - 1 be a second set of real numb:::rs
where aw = ai' i = 1,... , P and set

As before we are interested in approximating g E eJ)(K) by elements of eJ)OvI),
where <P: K ---?- C(X) is continuous.

In the case of ordinary rational approximation we know that for each
fE C[a, b] there exists a best approximation from R",.n[a, b]. However, in
the case of interpolating rational functions we can no longer insure existence
as is demonstrated by adapting the example of H. L. Loeb [3] to the operator
setting.
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For a fixed r = plq E Rm,n[a, b] we shall write P" + rPm to denote
the subspace {p + rq: p E Pn , q E Pm} of C[a, b]. Define

S(r) = {h EP" + rPm: hW(Yi) = 0, i = 1, ... ,p,j = 0,1, ... , llli - 1}.

It is straightforward to verify that S(r) is a d = (I + max{n + oq,
m + op} - m*)-dimensional subspace of C[a, b].

THEOREM 3.6. Let ([>: K -'>- C(X) be a continuous operator which is point­
wise strictly monotone and pointwise fixed at f E K '" AI where K and M have
been defined above. Then the following are equivalent:

(i) r* = p* I q* E M is a best starting approximation for ([>(f) from M.

(ii) The zero element (0, 0, ... , 0) is in the convex hull of the set of
d-tuples {a(x) x: x E X and I w(x)(<l>(f)(x) - ([>(1' *)(x)) j = II ([>(f) - <l>(r*)II},
where a(x) = sgn(f(x) - r*(x)) and ;~ = (gl(X), ... , gd(X)) with {gl ,... , gd}
a basis for S(r*). We shall write

X(r*) = {x E X: I w(x)(([>(f)(x) - $(r*)(x)) I = II $(f) - $(r*)II}.

(iii) There exist d + 1 consecutive points Xl < x 2 < .,. < Xd+l in

X '" U:~l {y;} such that

(a) I w(x;)($(f)(Xi) - $(r*)(Xi)) [ = II $(f) - $(1'*)11,
i = 1,2,... , d + 1,

(b) sgn{(f(xi) - r*(x;))Ll i} = (-1)i+l sgn{(f(xl ) - r*(xl )) Ll 1},

i = 1, ... , d + 1, where

Ll
i

= gl(Xl) gl~X2)'" gl(~i-J gl(~i+l)'" gl(~d+l) I.
gixJ giX2)'" gaCXi-l) gaCXi+l)'" gaCXd+l)

(iv) There exist d + 1 consecutive points Xi EX,....., U~~l {)Ii} such that

(a) I w(X;)($(f)(Xi) - ([>(r*)(Xi)) [=11 ([>(f) - ([>(1'*)11, i = 1,... , d + 1,

(b) sgn{[f(xi) - r*(xi)] n(x;)} = (-l)i+l sgn{[f(xl) - r*(xl )] n(;~l)}

for i = 1, ... , d + 1, where net) = (Yl - t)m l .•• (Yv - t)m" if p *° and
net) - 1 ifP = 0.

The above theorem is established by suitably modifying the arguments
found in [4, Theorem 3.1, p. 286] for the operator setting.

THEOREM 3.7. If 1'* E M is an optimal starting approximation for $(/),
then 1'* is unique.
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4. COMPUTATION OF AN OPTIMAL STARTING ApPROXIMATION
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In this section we shall examine the problem of computation of an optim21
starting approximation for an operator CP. The characterization theorems 'Ne
have developed are of particular importance in establishing computational
procedures. From the classical theory an optimal starting approximatio'1
would be computed using a modified Remes algorithm which involves
solving a nonlinear system of equations with Newton's method of higher
order. However, if the operator cP satisfies certain conditions then a best
starting approximation can be more easily obtained. Moreover, the best
starting approximation may be independent of the number of applicatic:1s
of <P provided this iteration is well-defined. We now \vish to consider sudicier:x
conditions on <P for which this behavior occurs. The foHmving definitions
and results are due to Meinardus and Taylor [6] and proofs will be omitted.

DEFINITION 4.J. Let <P: K --+ C(X) be a continuous operator. Vie say

that ep possesses Property I at f EO K provided for each r E K and x, y c X,
r(x)/f(x) = r( y)/f( y) implies

1>(r)(x)
f(x)

implies

1>(1')( r) r(y) rex) r-

f(Y) , and --:r-(, < -r-() ~ 1
J YJ J x

r( l'} r(x),
or -"- >--'>

ft.r) f(x) ""-

1

1- <P(r)(x) I < 11 _ q;(r)(y) i
f(x) fey) I'

DEFINITiON 4.2. Let <P: K -> C(X) be a continuous operator. 1> is said
to be one-sided atfprovided either <P(k) ? W(!) for all k E K or CP(k) c:;; fPC!)
for all k EO K.

THEOREM 4.3. Let K be a convex subset of C(X) and W: K --+ C(X) be
pointwise strictly monotone, pointwise fixed and possess Property I at f c K
where W(f) = f and f > 0 on X. Norm C(X) by Ii h 11 = ii hlfllT>(/z EO OX)).
Let r = pi q EO Rm,n[a, b] (a, b fixed) be the best relative approximation to.r
from R""n[a, b] with deviation A; that is, II (f - 1')lfllw = irrf{11 (f - S)!fii,,:
S E R""n[a, bJ}. If M = K n R""n[a, bJ is nonempty and relatively open in
Rm.,,[a, bJ and or EO M for 0 EO [1(0 + ,\), 1(0 - 1<)] then there exists
00 EO (I/O + Ii), 1((1 - Ii» for which oor is the best starting approximation
for f (with respect to <P).

Definition 4.1 and Theorem 4.3 have rather natural analogs in the setting
of uniform approximation (w(x) = 1).
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DEFINITION 4.4. The operator qj is said to possess Property J at f E K
if for each r E K and x, y EX, f(x) - rex) = fey) - r(y) implies
qj(f)(x) - qj(r)(x) = qj(f)(y) - qj(r)(y), and °~f(x) - rex) <fey) -r(y)
or °~ f(x) - rex) > fey) - r(y) implies I qj(f)(y) - W(r)(y) I >
I qj(f)(x) - qj(r)(x)l.

THEOREM 4.5. Let qj: K ---+ qX), K a convex subset of qX), and
M = K n Rm,n[a, b] be a relatively open subset of R.m,n[a, b] with m ~ n.
Assume qj is pointwise strictly monotone, pointwise fixed and possesses
Property J at f E K '" M. If r E Rm,n[a, b] is the best uniform approximation
to f from Rm,n[a, b] with deviation ,\ and if r + c E M for c E [-'\,'\] then
there exists Co E (-,\, ,\) for which r + Co is the best starting approximation
to qj(f) from M.

For the sake of any iteration we state the following theorem analogous to
a result of Meinardus and Taylor [6].

THEOREM 4.6. Let qj: K ---+ K satisfy the following properties:

(i) qj is continuous

(ii) qj(f) = f

(iii) qj is pointwise strictly monotone at f E K '" M

(iv) qj is a one-sided operator at f

(v) qj possesses Property I (Property J) at f

Then qjm = qj(qjm-l), m = 2, 3,... has all the same properties as qj and more­
over the best starting approximation for qj(f) is also the best starting approxi­
mation for qjm(f), m = 2, 3,....

5. ApPLICATION TO THE NEWTON OPERATOR

In this section we shall apply the theory developed to the operator
associated with the well-known Newton iteration scheme. Set

S = {fE C2(0, 00): j',j" =1= °for all x > °and imagef = (0, oo)}.

The choice of (0, 00) here is quite arbitrary. For a fixed x E [a, b] C (0, (0) we
can solve the equation f-l(y) - X = °by Newton's method to obtain the
value off at x where f E S. In particular, if Yo(x) = y(x) is the initial guess
to f(x) then the sequence defined inductively by

Yn(x) = Yn-I(X) - {j-I(Yn_I(X» - x}{j'[j-I(Yn_I(X»]}, n = 1,2,...
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represents the Newton iteration scheme for determining the unique zero
of the equationf-l(y) - x = O.

Our goal is to be able to calculate f(x) for aU x E [a, b] on a computer.
To accomplish this we shall select a class of functions 1"11 c::. Rn"n[a, b] which
are easily programmed and then select a member of j'vf as the initial guess.
Precisely, we wish to find an element r of 1\1 for which

I

i )In.r(X) - f(x) i ,;: II )in.s(X! - lex) 'I
. f(x) 1'00 "" I j(x) 100

for all S E AI where J'n.sCx) denotes the nth Newton iterate at x with initial
guess sex). This particular problem was first examined by D. G. Moursund
and G. D. Taylor [8] and is a generalization of the subroutine used to
calculate X 1 / 2 on a computer such as the CDC-3600.

In order to apply the theory we have developed we mus;; first determine
a suitable convex subset K of C[a, b] such that the Newton operator IV!
defined by

NtCh)(x) = hex) - {f-l(h(x» - x}{f'[f-l(h(x»)]}

maps K to K (so we may iterate). In [6] the following is established:

Case (i). If fE S and either f' > 0 and r < 0 on (0, os) or .f' < C
andl' < 0 on (0, co) then

K = {h E C[a, b]: hex) > 0 for all x E [a, h]}

is a suitable choice for K.

Case (ii). IffE S and either f' > 0 and r > 0 or l' < 0 and fff > 0
on (0, 00) then there exists a function 0 f E C[a, b] such that if

K = {h E C[a, b]: 0 < hex) < 0lx) for aU x E [a, b]}

then Nj : K ----.. K.
It is relatively straightforward to show that Nj is continuous, Nil) = f

and Nj is pointwise strictly monotone at f Moreover, iff is in Case (i) then
N j is one-sided from above atfand forfin Case (ii) Nt is one-sided from beim,v
atf

As previously mentioned the existence of a best starting approximation
is in general a rather difficult problem. For the special choice ofI (x) = x~,

ex E (0, 1) or I(x) = e'" existence has been established and, moreover, the
best starting approximation is independent of the number of iterations.
For f(x) = xc<, ex E (0, 1), set

K = {h E C[a, b]: hex) > 0 for all x E [a, b}},
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where °< a < b. The operator Nt is then defined by

Nt(h)(x) = ex [C - 1) hex) + h(1/~~-1(X)]

for hE K. In the case of j(x) = eX, set

K = {h E C[a, b]: °< hex) < el+x for all x E [a, b]}

and define

Nt(h)(x) = h(x)(1 + x - In hex))

for hE K.

THEOREM 5.1. For m = 1,2,... the following is true:

(a) The best starting approximation for m Newton iterations for the
calculation of x" is y"r" where r~ denotes the best relative approximation to x'"
from Rm.n[a, b] with deviation A" and

(b) The best starting approximation for 111 Newton iterations for the
calculation of eX is yr where l' denotes the best relative approximation to eX
from Rm.n[a, b] with deviation Aand

(
1 - A 1!2A 1

y = e 1 + J (1 _ A2)1/2 •

The result (a) was obtained independently and simultaneously by D. L.
Phillips [10] and G. D. Taylor [16]. Part (b) of the theorem is established in [6].

The aforementioned Property J is a rather natural analog of Property I
for the case of uniform approximation. The Newton operators used for
approximatingj(x) = eX andj(x) = x"', ex E (0, 1), fail to possess Property J
and hence Theorem 4.5 does not apply. However the Newton operator
for approximating j(x) = In x does possess Property J as is easily verified.

For 0 < a < b, set

K = {h E C[a, b]: hex) > In x-I for all x E [a, b]}

and define
N1nx(h)(x) = hex) - 1 + xe-h(x,

for h E K. It is straightforward to show that N1nx : K -+ K, N1nx is pointwise
strictly monotone at In x and is one-sided from above. With the above the
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foHowing result can be established using the same techniques as in the proof
of Theorem 5.1.

THEOREM 5.2. Let N1nx denote the Newton operatoi' for approximating
f(x) = In x, K as above and M = K n R",.,,[a, b} where In ~ n. The best
starting approximation (from M) for k Newton iterations for the calculation
of In x (in the uniform norm) is 1'* + Co where r* is the best uniform approxi­
mation to In x from Rm.n[a, b] with deviation A. (we assume 0 < ,A. < 1) and
Co = In[sinh Aji\].

6. FURTHER EXAMPLES OF OPERATORS DEFINiNG ITERAHVE SCHEMES

In the previous section we were concerned exclusively with iteration using
Newton's method. We shall now consider other iterative methods for the
solution of equations. First we introduce the important concept of order
which affords us a means of classifying the iterative schemes which we shah
discuss. The following definition is due to Traub [17]:

DEfiNITION 6.1. An iteration function z; t : £1 ->- E: defined by
o t(X1J = Xk+l' k = 0, 1,2,... for finding a root elL of the equation

f-l(y) - X = 0 (fixed x) is said to be of order p if there exists a nonzero
constant C such that 10/(Xk) - n: III X7. -x 11> --+ Cas k ->-Y:. The number
C is called the asymptotic error constant.

It is clear that if the order of an iteration function exists, then it is unique.
The iteration functions with which we are concerned are continuous ane­
point iteration functions; that is, each successive iterate Xk+1 is obtained
using only information from the previous iterate Xk' With each iteration
function 0 t(xk) = Xk+l we can, in a natural way, associate an iteration
operator <PI: S ---->- S Cera, b] via <Pt(Sk) = 51.+1 for approximating the
functionfEO era, b]. The subset S of era, b] depends uponfand [a, oj. We
shall now consider a number of iteration operators associated with kno\",ll
one-point iteration functions 0 1 for f(x) = eX andf(x) = x~/p, P = 2. 3., ....
The one-point iteration functions 0 t which we shall be concerned with are
order-preserving Pade rational approximations to a certain class of iteration
functions generated by inverse hyperosculatory interpolation at a single point.
A more detailed discussion of the above may be found in Traub [17].

We shall now enumerate various iteration functions with orders 2,3, and ,t
For each function we shall define the associated iteration operator and a
suitable choice for the convex set K. In most instances K is chosen so that
iteration is well-defined. We shall only remark that the operators
<Plf(x) = x l

/
p

, p = 2, 3'00' or f(x) = eT) considered are continuous,
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pointwise strictly monotone atf, possess Property I atfand havefas a fixed
point. With the above information Theorems 4.3 and 4.6 allow us to calculate
optimal starting approximations although no such calculations will be
presented. Recall that if the operator is not one-sided then the optimal
starting approximation may not be independent of the number of iterations.

Iteration Functions of Order 2

1. First we shall only mention that the Newton iteration function
already discussed has order of convergence 2.

2. Iteration Function: X,,+l = 0tCxn ) = (xn/p)[(p + 1) - (x,//x)] for
approximating j(x) = x l

/ P, P = 2, 3,....

Convex Set: K = {h E C[a, b]: 0 < h(x) < ((p + 1) x)l/p for all
x E [a, b], 0 < a < b}.

Iteration' Operator: (/:ItCh)(x) = (h(x)/p){(p + 1) - [(h(xW/x]), h E K.

Properties: (/:If : K -+ K, (/:If is one-sided from below at x l / P, p = 2, 3,....

Remark. If rp denotes the best relative approximation to xl /
p from

R""n[a, b] with deviation '\p then we must require that

Ap :0:;; [(p + I)l/P - I]/[(p + I)l/p + 1]

in order that orp E M for 0 E [1/(1 + Ap ), 1/(1 - Ap )].

Iteration Functions of Order 3

1. (a) For approximation ofj(x) = eX on an interval [a, b].

Iteration function:

Convex Set: K = {h E era, b]: h(x) > eX
-

2 for all x E [a, b]}.

Iteration Operator:

(/:Ilh)(x) = h(x)[(2 + x - In h(x»/(2 - x + In h(x»],

Properties: (/:If: K -+ C[a, b] and so K needs to be further restricted
to permit iteration.

Remarks. Ifr denotes the best relative approximation to eX from R""n[a, b]
with deviation Athen we must require that A < (e2

- I)/(e2 + 1) (which is a
very mild restriction since we always have A < 1) in order that or E M for
oE [1/(1 + A), 1/(1 - A)].
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(b) For approximation of/ex) = xl.'p on [a, b), 0 < a < b.

Iteration Function:
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Xn+l = 0 tCxn) = xn{[(p - 1) x n
p + (p + 1) xl/[(p + 1) x,,'" + (p - 1) x]}.

Convex Set: K = {h E C[a, b]: hex) > 0 for all x E [a, bn.
Iteration Operator:

<Pf(h)(x) = h(x){[(p - l)(lz(x)))) + (p + 1) xJ.![(p + l)(I1(x»,o + (p - 1) xJ},
hEK.

Property: ([>f : K --+ K.

2. (a) For approximation of/ex) = eX on [a, b].

Iteration Function: Xn+l = !Z tCx n) = txn[I + (In X n - X - 1)2J.

Convex Set: K = {h E C[a, bJ: hex) > 0 for all x E [a, b]}.

Iteration Operator: <I>f(h)(x) = th(x)[l -;-. (in hex) - x - 1)2], h E K.

Property: <Pf : K --+ K.

(b) For approximation of/ex) = Xl!» on [a, b], 0 < a < b.

Iteration Function:

() xnO - p) [(2p - 1
x n+l = 0 f xn = 2p 2 p _ 1

X)" p2(l - 2p)1
- -p + {I - \2 I·

X'l'/ \ P,,,:

Convex Set: K = {h E C[a, bJ: hex) > 0 for all x E [a, hi}.

Iteration Operator:

1 - p [( 2p - 1 X)2 r p2(1 - 2p) ]
fPtCh)(x) = 2p2 hex) p _ 1 - (h(x»P. --, (l _ p)2 . hE IC

Properties: (Pf: K --+ era, b] and so K needs to be further restricted.

Iteration Functions of Order 4

1. (a) For approximation of/ex) = eX on [a, b]

Iteration Function:

Convex Set: K = {h E C[a, bJ: 0 < hex) < eXT)'o for all x E [a, b)}

where "0 is the unique real zero of 1 - u+ tu2
- tu3 = O.
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Iteration Operator:
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CPtCh)(x) = h(x)[l - (In hex) - x) + tOn hex) - x)2 - i(ln hex) - X)3J

for hE K.

Properties: CPt : K ---+ K, cP is one-sided from below at e"'.

Remark. If r denotes the best relative approximation to e'" from R""n[a, b]
with deviation Awe must require that A < (eTO - l)/(eTo + 1).

(b) For the approximation of xl/Von [a, b], 0 < a < b.

Iteration Function:

(p - 1)(2p - 1) (Xn
P- X)3 _ ]+ 6 2 V p.'P Xn

Convex Set: K = {h E C[a, b]: hex) > 0 for all x E [a, b]}.

Iteration Operator:

cP (h)(x) = _ hex) [( (h(x»P - X) + P - 1 (h(x»)P - x )2
t 'P (h(x»P 2p (h(x»P

+ (p - 1)(2p - 1) (h(xW - X)3 _ ]
6p2 (h(x»V p

for h E K.

Properties: CPt : K ---+ K, CPt is one-sided from above at Xl/po

For the next two iteration functions we shall only be concerned with the
approximation of e"'.

2. Iteration Function:

[
(lnxn - x) ].x n +! = 0 t (xn) = X n 1 - -----'----"'-------"------

1 + HIn X n - x) + T-2(1n X n - X)2

Convex Set: K = {h E C[a, b]: hex) > 0 for all x E [a, b]}.

Iteration Operator:

CPlh)(x) = hex) [1 _ (In hex) - x) ],
1 + tOn hex) - x) + "1\On hex) - X)2

Properties: CPt : K ---+ K.

hEK.
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3. Iteration Function:

. _ () _ [1 + (In x n - x)(ln x n - X - 6)]
X n +1 - 0 t x n - X n 2(1 . -, .nxn-x+j}

Convex Set: K = {h E C[a, b]: hex) > e,,-3 for all x E [a, b]}.

Iteration Operator:

CPlh)(x) = hex) [1 + (In hex) - x)(ln hex) - x - 6) I
2(lnh(x) - x + 3) J'
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Properties: CPt : K ->- K, CPt is one-sided from above at eX.

Remark. We must require that,\ < (e3 - 1)j(e3 + 1), where It denotes the
error associated with r, the best relative approximation to eX on [a, b] from
Rm,,,[a, b]. As noted before, this restriction is extremely mild since we alwr.ys
have,\ < l.

Finally we shall examine an iteration function due to Kiss (see [17])
which also has order of convergence 4. As above we shall only consider the
iteration function for approximating eX on [a, b].

4. Iteration Function:

Convex Set: K = {h E C[a, b]: eX
-
2 < htx) < e"'+2 for all x E [a, b]}.

Iteration Operator:

f/J .'h)(x) = hex) [1 _ (In hex) - x)(l + tOn hex) - x») ]
J~' , 1 + (In hex) - x) + tOn hex) - X)2 '

Properties: CPt : K ->- K, CPt is one-sided from below at eX.

hE J.f(.

Remark. We must require that ,\ < (e2 - 1)/(e2 + 1), where A :is the
error associated with 1', the best relative approximation to eX from Rm.n[a, bi.
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