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1. INTRODUCTION

In [7] D. G. Moursund examined the problem of approximating x'/2 over
an interval [a, ] (@ > 0) by applying the Newton—Raphson iteration scheme
to classes of polynomial and rational approximants. G. Meinardus and
G. D. Taylor [6] have observed that the above problem may be posed in a
more general setting and the results obtained by Moursund extended to the
approximation of additional functions. Specifically, given a compact subset
X of [a, b], let C(X) denote the space of all continuous real-valued functions
defined on X normed by || f] = max{] w(x)f(x)|: x € X}, where w e C(X)
and w > 0 on X. Let K be a convex subset of C(X) and @ a continuous
mapping of K into C(X). The problem of interest was then to approximate
g € D(K) by elements of P(M) where M is a subset of K consisting of members
of a Haar subspace of Cla, b]. By imposing certain restrictions on D, K
and M, Meinardus and Taylor were able to develop a theory for the above
nonlinear approximation problem which is analogous to the classical
Chebyshev theory. Moreover they were able to obtain results similar to
those of P. H. Sterbenz and C. T. Fike [13] and R. F. King and D. L.
Phillips [2] in the more general setting. Since the theory obtained has appli-
cation to many iterative processes that can be used to approximate functions
such as e?, In x and x*/?, n = 2, 3,... the following definition is made:

DEFINITION. p € M is an optimal (or best) starting approximation for g,
with respect to @ and M, if | g — DP(p)l| < |lg — D(g)| for all g & M.

In this paper we shall investigate the above problem for M a subset of K
consisting of certain classes of rational functions. We shall be particularly
concerned with the characterization of optimal starting approximations for
certain choices of K. Uniqueness of best approximation follows from the
characterization theorems as in the classical rational Chebyshev approxi-
mation. Existence in the general setting is difficult to establish. The theory
obtained will be applied to the Newton operator and optimal starting approxi-
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mations calculated for x*, « € (0, 1), €%, and In x. Finally we shall indicate
a number of additional iteration schemes for which the theory is also
applicable.

2. DEFINITIONS AND BASiC RESULTS

In what follows X will denote a compact subset of {g, b] containing at
least m + n -+ 2 points where m and » are fixed for the discussion at hand.
Let P, denote the set of all polynomials p with cp < n (¢p denotes the degree
of p) and set

Ryala, bl ={plqpeP,,qeP,,(p.q) =1,4>0onladl,

where (p, g) = 1 denotes the fact that the polynomials p and ¢ are velatively
prime.

In our development we wish to make use of the results and techniques
of the classical Chebyshev rational approximation. Consequently we intro-
duce the following definitions and results from the work of Meinardus and
Taylor [6]. We assume that K, M and @ are as described in Introduction.

DEFINITION 2.1. The operator @ is called pointwise strictly monotone
at fe Kif for each A, k € K we have

L D(h)(xe) — P(F)xo)l < [ Plk)(x) — P(F)(xy)l  foreach xoe X
where either k(xg) << A(xy) << f(xp) oF Fxg) << #{x) << kixyh

LeMMA 2.2, Let @: K — C(X) be pointwise stricily monoione at fe K.
kek and at xye X, k(xg) == f(xy), thern D(k)(xy) = P ) xg)

DerivitioN 2.3, The operator @ is said to be pointwise fixed at fe X
if he K with h(xy) = f(x,) for x, € X implies @(2){x,) = DS Hxe).

Next we shall note that the composition of two continuous operators
possessing the above properties is again such an operator provided that
domains and ranges mesh correctly.

Lemma 2.4, Let @: K— C(X) and : L — C(X) be contintious operaiors
with (K)C L, D pointwise strictly monotone and poiniwise fixed at fe K
and i pointwise strictly monotone and poiniwise fixed ar D(f)ye L. Then
$D: K — C(X) is a continuous pointwise strictly monotfone operator af f
which is also pointwise fixed at f.
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In general the notions of pointwise strictly monotone and pointwise
fixed are independent. However if @: K — K, as is necessary if we wish to
iterate with @, then the notions of pointwise strictly monotone and pointwise
fixed are related according to the following lemma:

LemMA 2.5. If ©: K-> K is a continuous operator on the convex set K
which is pointwise sirictly monotone at [ € K then @ is pointwise fixed at f.

For the sake of any iteration processes we may be interested in, we state
the following corollary to the above lemma:

COROLLARY 2.6. If @: K— K is continuous, ©(f) = f for some fe K
and D is pointwise strictly monotone at f € K then @™: K — K defined induc-
tively by @7(h) = (@™ Yh)), m = 2, 3,..., satisfies P"(f) = f and D" is
pointwise strictly monoione at f.

3. CHARACTERIZATION OF OPTIMAL STARTING APPROXIMATIONS

We shall now specialize M and K and develop an alternation theory for
characterizing optimal starting approximations which is similar to the classical
Chebyshev theory. The following version of a well-known lemma from Rice
[11, p. 79] will be used extensively.

LemMA 3.1. Given v = p/ge R, .[a,b], 7 >0 and any ordered set
{x;} of s points in X, s <1+ max{m + dp, n -I- oq}, there is a rational
Jfunctionr. € R, ,Ja, b] such that () || r. — rlle << 7and (i) sgn(r(x) — r(x)) =
(=D xe(x;, xq), I =0, 1,..., 5, where x, =a if x, 7 a and x,,1 = b
if x; # b.

THEOREM 3.2. Let @: K — C(X) be a continuous operator, where K is
a convex subset of C(X). Let M = KN R, ,[a, b] be a nonempty, relatively
open subset of R,, ,[a, b]. Finally, assume that @ is pointwise strictly monotone
and pointwise fixed at f € K ~ M. Thenr € M is the best starting approximation
Jor D(f) if and only if there exist points

{x}¥ CX, N=2+ max{m- dp,n -+ oq},

Jfor which
(l) X1 <x2<"'<xN,
(i) [ wENP()x) — DY) = | P(f) — @@, i = L,..., N, and
(i) sgn(f(x) — r(x)) = (=D sgn(f(x)) —r(xy)), I = 1,..., N.
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Procf. (Sufficiency). Since f¢ M we know that there exists a point
xp€ X for which f(x,) & r(xp). Thus || @(/) — D(r)i| == 0. Suppose that
| @ HD()x) — D)) = | D(f) — D(r))) and

sgn(f{x;) — r{x) = (=1 sgn(f(x;) — r(x ), i=1,.., N

Then D(F)x) = DP)(x;). Let r,e M be such that || &(f) — SO
1P — DI At x;, i=1.. N, [wGE)D()x) — Plrix))l
| w(x XD(fi{x) — Pr)(x,))|. Now at each x; either rix) > f(x) or
r{x;) << flx,) since @ is pointwise fixed at /. In the first case we have
i(x;) = ry(x;) and in the second case that r(x;) < #;{x;} by the peiniwise
strict monotonicity of @ at f. But this implies r = #, as in the standard
rational theory.

AW/

{(Necessity). Suppose that there exists {x}, CX. ¥' < N, N' maximsl
on which | w(xP(f)(x) — Pr)(x))| = || P(f} — Plr)| and

sgn(f(x;) — r(xp)) = (=D sgn(f{(x;) — r(x)).

Let ;. 4,,..., {y-, be a collection of relatively open intervalsin [g, &] such
that x;€1;, I, nI; = ¢ for i # j (I; denotes the closure of 7; relative te
[a, b)), all extreme points = {x € X: | o(x}P( ) x) — PE} )| =
1S/ — @)} C U?; I; and for each extreme point in J; the function
f — r has constant sign. Let

;N7 N
Y=Xn ( N}
=1 g

where [;" denotes the complement of J; with respect to [g, 51. Y is a compact
subset of X and | o(x)(D(f)(x) — DY x))| < | D(f) — D()| for all xe ¥.
By continuity there exists p > 0 for which

max | w((B()) — PO < || S(F) — D) — p.
Next, let
W, ={xeXnIl:| ox)(P(f)x) — Pr)x)| = H D) — Bl

and
sgn(f(x) — r(x)) = sgn(f(x;) — r{x)}.

W = U?:l W, is a compact subset of X and so by continuity there exists
% > 0 such that | f(x) — r(x)| = n on W. Set

Z, = xe X0k @@ — Q) = i B(F) — DF)
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and

sgn(f(x) — r(x)) # sgn(f(x;) — r(x,);
and let Z = |y, Z; . Observe that
| o)D) (x) — D)) <[ D(f) — D)l forallxeZ
by the construction of the intervals {I,}. Finally, set
U; ={xe XN I;: | a(x)(D(f)x) — D)) < H D(f) — DI}

and let U = Uﬁi’l U, . Then by continuity there exists 8 > 0, 8§ < p, such
that

max | w@)(@()) — PO < || () — D) — 5.

Using Lemma 3.1, the continuity of @ and the fact that M is relatively open
in R, ,[a, b] we can select ¢, > O such thatfor0 < e < e ,r.e M and
— D)) _ —1
_max | o((@FE) — eI < I 9(f) — )| — 3.
Next, by continuity of f and r, we can select €5, 0 < €, < ¢, such that for

0 < € < e, F, lies strictly between f(x) and r(x) on W. By the strict mono-
tonicity of @ at f we then have that

max | w(x)N(D(f)(x) — LN < | P(f) — PO

Thus for e with0 < € < ¢, , r.is such that || D(f) — D(r.)| <| D) — DF)|.
Finally, since M is relatively open in R, .[a, b], we can select e; with
0 < & < ¢ so that r, € M and || D(f) — D) < | P(f) — D(r)|l. Thus
re, 1s a better starting approximation than » which is a contradiction and this
concludes the proof of the theorem.

CoroLLARY 3.3. If D(f) has a best starting approximation under the
setting of the above theorem then it is unique.

In the next theorem we wish to consider a characterization of the best
starting approximation for @(f) from a family of functions having restricted
ranges. Much of the general theory for restricted range approximation by
both polynomial and rational functions can be found in Taylor [14] and
[151, Schumaker and Taylor [12], and Loeb, Moursund, and Taylor [5].

For our consideration let /(x), u(x) € C(X) with I(x) << u(x) for all x € X.
Define K ={fe C(X): l(x) < f(x) <u(x)} and set M = KN R, ,la, b]
which we assume is nonempty.
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TueoreM 3.4. Let D: K — C(X) be a continuous operator wiich is point-
wise strictly monoione and pointwise fixed at f€ K ~ M, where K and M are
as defined above. Then v = plqge M is ¢ best starting apprm‘r’maﬁor for &L
if and only if there exists {x ), C X, N = 2 + max{n + &g, m + &p}, fo
which

L x <x < <Xy,
i) | w(x) (BU)x) — PO = || BF) — B, rix) = (e, or
r(x) = I(xy),
(i) sga*(f(x) — r(xy) = (—D"F sgn*(f (x.) — r(x)),

where
sgn (f(x) —r(¥) i r(x) = Kx) and
r{x) = u{x)
+1 it r(x) = I{x),
\—1 if Hx) = u(x).

sgn* (f(x) — r(x)) =

CORCLLARY 3.5. Under the conditions of the above theorem the optirug!
starting approximation for @(f) is unigue.

In 9] A. Perrie examined the problem of rational approximation with
osculatory interpolation. We shall now examine a problem analogous to
that considered by Perrie for our operator setting. Let X C {4, ] be compact,
{732, a fixed set of p points in X with b <y, < <y, and (M} 8
ﬁxed set of positive integers with m* = 22-:1 m; < n 4+ 1. We shall assume
that X contains at least n + m — m™* + p -~ 2 points. Furthermore, let
{a;}7 . be a fixed set of p real numbers and define

K={feCX):f(y)=a,,i=1,2,..,p}

Let a;, i=1,..,p, j=0,1,...,m —1 be a second set of real numbers
where @; = ¢;, [ = 1,..., p and set

M = {r € Rm,n[a: b] }'(j)(.)"i) =y, = ia--:ap:«j =0, 1., m — }}

As before we are interested in approximating g ¢ ®(K) by elements of $(M),
where @: K — (C(X) is continuous.

In the case of ordinary rational approximation we know that for each
fe Cla, b] there exists a best approximation from R, ,[a, #]. However, in
the case of interpolating rational functions we can no longer insure existence
as is demonstrated by adapting the example of H. L. Loeb i3] to the operator
setting.
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For a fixed r = p/q e R, ,[a, b] we shall write P, + rP,, to denote
the subspace {p +rq: pe P, ,q< P,} of Cla, b]. Define

Sty ={heP, +rP, :h9(y) =0,i =1,.,p,j =0,1,...,m — 1}.

It is straightforward to verify that S(+) is a d = (1 + max{n + dq,
m -+ dp} — m™)-dimensional subspace of Cla, b].

THEOREM 3.6. Let ®: K — C(X) be a continuous operator which is point-
wise strictly monotone and pointwise fixed at f = K ~ M where K and M have
been defined above. Then the following are equivalent:

() r* = p*| g™ e M is a best starting approximation for P(f) from M.

(i1) The zero element (0,0,...,0) is in the convex hull of the set of
d-tuples {o(x) £: x € X and | w(x)}(P(f)(x) — P(r*)(x))| =[] D(f) — P},
where o(x) = sgn(f(x) — r*(x)) and £ = (g1(x),..., ga(x)) with {gs ,.... 8¢}
a basis for S(r¥). We shall write

X(r*) = {x € X1 | GNP )x) — PE)x)| =[] D(f) — D)

(iii)( There exist d -+ 1 consecutive points x; < Xy < " < X4 in
X ~ Ui {3} such that
@) | @) D) (x) — PaH)x)| = || P(f) — PG,
i=12,...,d+1,

(b) sen{(f(x) — r*(x)A;} = (D" sgn{(f(x) — r¥(x)) 433,
i=1,.,d -+ 1, where

y g1(_x1) gl(.xz) g1(3fi—1) g1().€n;+1) g1(~\:d+1)

2dv) ga(r)  gaiet)  galresn) - galrarn) |

(iv) There exist d 4 1 consecutive points x;, € X ~ Uf=1{ ¥i} such that

(@) 1 ox)D()x)— Pu*)x))| = DP(f) — P, i=1,...d +1,
(b sgn{[f(x) — r*ee)] 7(x)} = (=D sgn{[f(x) — r*(x)] mlx)}
Jor i =1,..,d+ 1, where w(t) = (y; — )" -~ (y, —t)" if p =0 and
a(t)=1ifp =0.
The above theorem is established by suitably modifying the arguments
found in [4, Theorem 3.1, p. 286] for the operator setting.

TreoreM 3.7. If r*e M is an optimal siarting approximation for DO(f),
then r* is unique.
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4, COMPUTATION OF AN OPTIMAL STARTING APPROXIMATION

In this section we shall examine the problem of computation of an optimal
starting approximation for an operator @. The characterization theorems we
have developed are of particular importance in establishing computational
procedures. From the classical theory an optimal siarting approximation
would be computed using a modified Remes algorithm which involves
solving a nonlinear system of equations with Newton’s method of higher
order. However, if the operator @ satisfies certain conditions then a best
starting approximation can be more easily cbiained. Moreover, the best
starting approximation may be independent of the number of applicaticns
of @ provided this iteration is well-defined. We now wish to consider suficiert
conditions on @ for which this behavior occurs. The following definiticns
and resulis are due to Meinardus and Taylor [6] and proofs will be cmitred.

DeFnaTION 4.]. Let @: K — C(X) be a continuous operator. We say
that € possesses Property 1 at fe K provided for sach r 2K and x, y2 X,
() f(x) = r(3)/f(y) implies

X PN W) r() "y )
= o nd Lo — <1 or Ll > L 2
7@ o M TGy T SR
implies

D(r)(x) Sy |
=S| <=5

Dermvition 4.2, Let @: K — C(X) be a continuous operator. @ is said
to be one-sided at f provided either @(k) = &{f)forall k € K or P(k) < (N
forall ke K.

TueoreM 4.3, Let K be a convex subset of C{(X) and @: K — C(X) be
pointwise strictly monotone, pointwise fixed and possess Property I at fe X
where @(f) = fand f > 0 on X. Norm C(X) by || fi|| = || 4]/ || (i C(X ).
Let ¥ =p|qe R, [a, b} (a, b fixed) be the best relative approximation tc i
from R, .la, b] with deviation X; that is, || (f — #)}[f |» = 1af{|{f — 5)//l.:
se R, JJa, By If M = K R, [a, 6] is nonempty and relatively open in
R, la bl and Sre M for Sc[l/(1 4 X, 1/(1 — X)) then there exists
O € (1/(1 + A), 1/(1 — A)) for which Sy is the best starting approximatio
Jor f (with respect to D).

Definition 4.1 and Theorem 4.3 have rather natural analogs in the setting
of uniform approximation (w(x) = 1).
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DErFINITION 4.4. The operator @ is said to possess Property J at fe K
if for each reK and x,ye X, f(x) —r(x) =f(y) —r(y) implies
D(f)x) — P(r)(x) = P(f)y) — Pr)(y), and 0 < f(x) — r(x) <f(y) —r(¥)
or 0=f(x) —rx)>f(y)—r(y) implies |D(f)(p)— COY»)I >
| D()(x) — D).

TrEOREM 4.5. Let @: K — C(X), K a convex subset of C(X), and
M = KN R, .la, b] be a relatively open subset of R, ,la, b] with m < n.
Assume D is pointwise strictly monotone, pointwise fixed and possesses
Property J at fe K ~ M. If r€ R, ,la, b] is the best uniform approximation
0 f from R, ,la, b] with deviation X and if r + c€ M for ce[—A, A] then
there exists co € (—A, A) for which r + ¢, is the best starting approximation
to D(f) from M.

For the sake of any iteration we state the following theorem analogous to
a result of Meinardus and Taylor [6].

THEOREM 4.6. Let @: K — K satisfy the following properties:

(i) D is continuous
@ o) =s
(iti) D is pointwise strictly monotone at fe K ~ M
(iv) D is a one-sided operator at f
(v) @ possesses Property I (Property J) at f.
Then & = G(D™ ), m = 2, 3,... has all the same properties as D and more-

over the best starting approximation for @(f) is also the best starting approxi-
mation for D*(f), m = 2, 3,... .

5. APPLICATION TO THE NEWTON OPERATOR

In this section we shall apply the theory developed to the operator
associated with the well-known Newton iteration scheme. Set

S = {fe CX0, w): f',f" # 0 for all x > 0 and image £ = (0, c0)).

The choice of (0, «) here is quite arbitrary. For a fixed x € [a, 6] C (0, o) we
can solve the equation f—(y) — x = 0 by Newton’s method to obtain the
value of f at x where f€S. In particular, if y,(x) = y(x) is the initial guess
to f(x) then the sequence defined inductively by

Iu(®) = Yna(®) — {f 7 (Ppa®) — XH U FGasD, 2 =12,
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represents the Newton iteration scheme for determiining the unique zero
of the equation f1(y) — x = Q.

Cur goal is to be able to calculate f(x) for all x € ig, ] on a computer.
To accomplish this we shall select a class of functions M C R, g, #] which
are easily programmed and then select a member of M as the initial guess.
Precisely, we wish to find an element r of M for which

i y'n.T(x) ——-f(X)

’ il Va, X)) — F(x) i
f(x) o S Fx) [

for all se M where y, (x) denotes the nth Newton iterate at x with initial
guess s(x). This particular problem was first examined by D. G. Moursund
and G. D. Taylor [8] and is a generalization of the subroutine used to
calculate x/? on a computer such as the CDC-3600.

In order to apply the theory we have developed we must first determine
a suitable convex subset K of Cla, b] such that the Newton operator &,
defined by

N (x) = h(x) — {f 71 R(x)) — xHF 'L A
mans X to K (so we may iterate). In [6] the foliowing is established:

Case (i). If fe§ and either f' >0 and f" <G on (0, o) or /' < ©
and f” < 0 on (0, oo) then

K=1{heCla,bl: i(x) >0 forallxela b}
is a suitable choice for K.

Case {ii). If feS and either f' >0 and f" >0 or f" < 0 and /" > &
on (0, co) then there exists a function @, e Cig, 5] such that if

K =1{heCla, b]: 0 < h(x) < @Ax) forall xelq, b}

then N;: K~ K.

It is relatively straightforward to show that N, is continuous, N{ /) = f
and N, is pointwise strictly monotone at f. Moreover, if f'is in Case (i) then
N;is one-sided from above at fand for fin Case (i) ¥; is one-sided from below
at f.

As previcusly mentioned the existence of a best starting approximation
is in general a rather difficult problem. For the special choice of f(x) = x°,
xe(0, 1) or f{x) = e® existence has been established and, morecver, the
best starting approximation is independent of the number of iterations.
For f(x) = x*, a (0, 1), set

K ={heCla,bl: (x) > O forall xea, b1},
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where 0 < a << b. The operator N; is then defined by
1 x
Nf(h)(x) = o [((x_ _— 1) /1(x) —]—W—“‘)_—l(;)]

for /1 € K. In the case of f(x) = %, set
K ={heCla, bl: 0 < h(x) < et® for all x € [a, b]}
and define
NA(R)(x) = A(x)(1 4+ x — In A(x))
for he K.

THEOREM 5.1. For m = 1, 2,... the following is true:

(a) The best starting approximation for m Newton iterations for the
calculation of x* is y.r, where r, denotes the best relative approximation to x*
from R, ,la, b] with deviation A, and

_ A+ AT — (1 = A
Yo [ 208 — DA — AT ]

1
—.

(b) The best starting approximation for m Newton iterations for the
calculation of e is yr where r denotes the best relative approximation to e®
from R,, ,la, b] with deviation A and

B (1~—)\1/2A 1
y=¢ 1+,\) (L — i

The result (a) was obtained independently and simultaneously by D. L.
Phillips [10] and G. D. Taylor [16]. Part (b) of the theorem is established in [6].
The aforementioned Property J is a rather natural analog of Property 1
for the case of uniform approximation. The Newton operators used for
approximating f(x) = e® and f(x) = x*, a € (0, 1), fail to possess Property J
and hence Theorem 4.5 does not apply. However the Newton operator
for approximating f(x) = In x does possess Property J as is easily verified.
For 0 < a < b, set

K = {heCla, bl: l(x) > Inx — 1 for all x € [a, b]}

and define
Nina(B)(x) = h(x) — 1 + xe M@

for h e K. Tt is straightforward to show that Ny, : K — K, Ny, is pointwise
strictly monotone at In x and is one-sided from above. With the above the
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following resuit can be established using the sams techniques as in the proof
of Theorem 5.1.

TuaeoreMm 5.2. Let Ny, denote the Newton operator for approximaiing
f(x) =Inx, K as above and M = KN R, ,la, b] where m << n. The best
starting approximation (from M) for k Newton iterations for the calculation
of In x (in the uniform norm) is r* + ¢, where #* is the best uniform approxi-
mation to In x from R, ,la, b] with deviation A {we assume 0 << A < 1) and
¢, = In[sinh AJAL

6. FURTHER EXAMPLES OF OPERATORS DEFINING [TERATIVE SCHEMES

In the previous section we were concerned exclusively with iteration using
Newton’s method. We shall now consider other iterative methods for the
solution of equations. First we introduce the important concept of order
which affords us a means of classifying the iterative schemes which we shali
discuss. The following definition is due to Traub [17]:

DeFmITION 6.1. An  iteration function 32,: E'— £ defined by
DAX) = X101, kK =0,1,2,... for finding a root « of the equation
F Y3 — x = 0 (fixed x) is said to be of order p if there exists a nonzerc
constant C such that | @(x;) — a|/| x, — 2 |* — C as &k — oo. The number
C is called the asymptotic error constant.

It is clear that if the order of an iteration function exists, then it is unigue.
The iteration functions with which we are concerned are continuous cne-
point iteration functions; that is, each successive iterate x;.; is obtained
using only information from the previous iterate x, . With each iteratic
function @ A{x;) = x,., wWe can, in a natural way, associate an iteration
operator D, : S — SC Cla, b] via Dds,) = 5,4, for approximating the
function fe Cla, b]. The subset S of Cla, b] depends upor: f and [q, 5]. We
shall now consider a number of iteration operators associated with known
one-point iteration functions &, for f(x) = e¢* and f(x) = x¥2, p = 2. 3,....
The one-point iteration functions 2, which we shall be concerned with are
order-preserving Padé rational approximations to a certain class of iteraticn
functions generated by inverse hyperosculatory interpolation at a single poiri.
A more detailed discussion of the above may be found in Traub [17].

‘We shall now enumerate various iteration functions with orders 2, 3, and 4.
For each function we shall define the associated iteration operator and a
suitable choice for the convex set K. In most instances K is chosen so that
iteration is well-defined. We shall only remark that the operators
DAf(x)y =xYr, p=2,3,... or f(x)=e¢") considered are continuous,

640/12[2-7
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pointwise strictly monotone at f, possess Property I at fand have f as a fixed
point. With the above information Theorems 4.3 and 4.6 allow us to calculate
optimal starting approximations although no such calculations will be
presented. Recall that if the operator is not one-sided then the optimal
starting approximation may not be independent of the number of iterations.
Iteration Functions of Order 2

1. First we shall only mention that the Newton iteration function
already discussed has order of convergence 2.

2. Tteration Function: x,; = @,(x,) = (x,./»(p + 1) — (x,%/x)] for
approximating f(x) = x'/?, p = 2, 3,....

Convex Set: K ={kheCla, b]: 0 < h(x) < ({(p + 1) x)/* for all
x€a, bl,0 < a < b}

Iteration Operator: @(h)(x) = (h(x)/p(p + 1) — [(A(x))?/x]}, k € K.
Properties: @, : K — K, @, is one-sided from below at x1/2, p =2, 3,....

Remark. If r, denotes the best relative approximation to x'/? from
R, .[a, b] with deviation A, then we must require that

A < (p + DY — 10/ + DY? + 1]
in order that 8r, & M for Se[1/(1 + A,), 1/(1 — A )]
Iteration Functions of Order 3
1. (a) For approximation of f(x) = e® on an interval [a, b].
Iteration function:
Xpy1 = Qf(x'ﬂ) = xn[(z + x —In -"n)/(2 —X + n xn)]
Convex Set: K = {h e Cla, b]: h(x) > e*~2 for all x € [a, b]}.
Tteration Operator:
P)(x) = h(X)[2 + x —Inh(x))/2 — x +Inh(x))], hek

Properties: D; : K — C[a, b] and so K needs to be further restricted
to permit iteration.

Remarks. If r denotes the best relative approximation to e* from R, ,[a, b]
with deviation A then we must require that A < (e? — 1)/(e? + 1) (which is a
very mild restriction since we always have A < 1) in order that ér e M for
dell/(1 + ), /(1 — N
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(6) For approximation of f(x) = x''? on [a, 5], 0 < g < b.
iteration Function:
K = Ax0) = X, {{(p — D xa? -+ (p +DxVilp +Dx,? +(p— Dl
Convex Set: K = {he Cla, b]: Alx) > 0 for all xe g, 5]}

Iteration Operator:

Dhy(x) —/1(‘6){[(17 — D)? = (p 4+ 1) x}lp + Dix)? +{(p — 1«3,

hek
Property: @; : K — K.
(a} For approximation of f{x) = e* on [a, b].
Tteration Function: x,; = ZAx,) == ¥x,[! +{lax, —x — )]
Convex Set: X = {fie C{a, b]: h(x) > O for all x € {a, b}}.
Iteration Operator: DLA)(x) = (x)[l — (Ink(x) —x — 1)*}, 71 e X
Property: @, : K — K.

(b) For approximation of f(x) = x/? on [q, ], 0 < a < b.

Iteration Function:

= ey = SR (L P2

2p p—1 x7
Convex Set: K = {he Cla, b]: i(x} > 0 for all x = [g, b1}
Eteration Operator:

9

N_ 1—p 2p—1 x Vo= 2p) -
PI) =~ hx) [(p#1 — (h(x))p) + 5 . hex

Properties: @; : K — Cla, b] and so K needs to be further restricted.
Iteration Functions of Order 4
1. (a) For approximation of f(x) = e” on [a, 5]
{teration Function:
X = D(xn) = x,[1 —(nx, —x) + ¥nx, — xp* — Hnx, — %°].

Convex Set: K = {heCla, b]: 0 < Alx) < ¥ for zll x&g 2}
where 7, is the unique real zero of 1 — # - {4 — i = 0.
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Iteration Operator:
D(h)(x) = Ax)[1 — (In A(x) — x) + H(In A(x) — x)? — I(n A(x) — x)?]
for he K.
Properties: @, : K — K, @ is one-sided from below at e,

Remark. 1f r denotes the best relative approximation to e* from R, ,[a, b]
with deviation A we must require that A < (e™ — 1)/(e™ + 1).

(b) For the approximation of x*/? on [a, b], 0 < a < b.

Iteration Function:

Xpig = DoX,) = — afp_n [(

xn:n.—p)C)_[_ pz—pl (Anin—; x)z

i (rp—12p—1) (xnp — X)‘”’ _p]_

6p? x,?

Convex Set: K = {/ € Cla, b]: i(x) > 0 for all x € [a, b]}.
Iteration Operator:

N hx) prax)? —x P —1 ((h(x))? — x\?
M) = — = It ) )+ T ( i) )

(p —DCp —1) ((A(x)? — x\*
602 ( B(x)? ) —p]

_l_.
for he K.
Properties: D, : K — K, O, is one-sided from above at x'/?,

For the next two iteration functions we shall only be concerned with the
approximation of e®.

2. Tteration Function:

(Inx, — x) ]

Xpyq == TAx,) = x, |1 —
T A [ 1+ #(In x, — %) + 7(in x, — x)?

Convex Set: K = {h e Cla, b]: A(x) > 0 for all x € [a, b]}.
Iteration Operator:

(In h(x) — x)

1 4 2(0n A(x) — x) -+ &(n A(x) — x)? ], hek.

B,)x) = ) [1 —

Properties: @; : K — K.
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3. Iteration Function:

(inx, — x)(lnx, — x — 6)]

Xapr = Drx,) = X, [1 + 2inx, — x + 3

Convex Set: K = {h € Cla, b]: h{(x) > "3 for all x e [g, b}}.
[teration Operator:
(In A(x) — xXIn k(x) — x — 6) 3

D AN(x) = h(x) [1 . R — T |, hex.

Properties: @, : K — K, &, is one-sided from above at 2.

Remark. We must require that A << (e3 — 1)/(e® + 1), where A denotes the
error associated with r, the best relative approximation to e® on [g, 5] from
R, qla, b]. As noted before, this restriction is extremely mild since we always
have A < 1.

Finally we shall examine an iteration function due to Kiss {see [17]}
which also has order of convergence 4. As above we shall only consider the
iteration function for approximating ¢* on [g, 5].

4, Iieration Function:

(Inx, — x){(1 + }(ax, — X)) 7
[+ (nx,—x)+nx, —x¢ I

Xne1 = D(x,) = X, [1 —

Convex Set: K = {he Cla, b]: e % < Mx) < ¢t for all xe{a, &3}

Iteration Operator:

<

%

o r k) — 0+ Mk — ) ],
20 = ) [~ T i =9 © I hey =k K

Properties: @, : K — K, 9, is one-sided from below at e®.

Remark. We must require that A < {e* — 1)/(e? + 1), where A is the
error associated with r, the best relative approximation to e® from R, ,[a, 51
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